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A SOURCE SOLUTION FOR SHORT CRESTED WAVES

FOREWARD

This study was performed under two contracts, as it is basic to both.
Conssquently it 1z being issued as a report on btoth Series 3, and Series 61.

ABSTRACT

A Green's function for the boundary value problem arising in the
diffraction of short-crested waves srcuzd chrtecies of bournded cross seotion
is presented. The diffraction proolem is fcrmulated in a precise wuy which
agsures the existence and uniqueness of a solution. The Green's function
is 80 constructed as to make possible a representation of ths vslocity paten-
tial at internal points of the fluid in terms of its values on the obataolq,
vhus in general reducing the diffraoction problsm to the solution of a
Friedholm integral equation of the second kind. 1Iwo problems of interest
in the thecry of surface weves, the production of waves by a moving partiilox,
and the reflection from a horizontal strip ere studied by means of the
Green's function. Numerical results are obtained for the first probiem and
indications of numeriesal procedurss given for the second. In particular, the
strip problem is s0 formulated as to make possible the applicaticn of the
variational msthods of Sohwinger.
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l. Intreduotion

A difficult but fundamental problem in the theory of surface water waves
is the study of diffraction around fixed obstaolea, S8uch a situation arises
in the theory of docks, piles, breakwater=z and, zs an auxilisrsy prodlem, in
the study of chip moticp., In thrae dimsusicaal motion the problem has been at-
taoked by Fritz Joun 1) who suocceeded in obtaining an integral equation formm-
lation involving singulsr kerneis. Beéyond this little has been done for the
case of ohetacles of 2inite extent.

The purpose of the present report is tc pressnt a souroce solution in the
oase of the sc-called short-orested waves, i.s., waves whioh are periodio in
a direction parpendiocular to *hat of propagation. Such a solution is the
fundamental tovl in an investlgation of asscclated diffraction problems by
means of Frits John's methods. FRYS10811Y, 1V Zives Luv voiuvily poersaviir 32 2
line source on whioh the strength varies pericdically along the lime. Math-
epationlly it enables one to express the potential of the interior of the fluid
- in terms of data on ths cbstacle surface.

B i

In Section two we present the function and study its properties as well
a3 indicets the zeneral diffrectise problsms Lo whioh it is applicable. 1In the
- next two seotions ws indicate how the sclution may be used in two problems, the
determination of the waves nroduced by a weve-meker, and the refleotion oo-
effioient for a rigid horizontal barrier in the free surfacs., A few nurmeriocal
results arc given for the first problem.

The use of a souroe solution, or Green's functiosa, is well known for
other boundary value problems., In addition to ylelding existence theoreme
wnich insure that the problem is correctly formulated, they mey be used to cb-
tain szome approximate solutions. For example, it is shown in Seotion 4 that
such s formulation enables ons to invoke the wariational proocedures of Schwinger.

An effort has been made in this report to present ideas which admit of
numerioal oomputations. Some work of this kind is, in faot, underway now arnd
will be presented at s later time. .

2 The Grean's Munotion

In order to introducy the source solution in & natural way we will dis-
cuss briafly the goneral diffraotion problem for short-orested wavsa ia the
presence of oylindrioal obstacles.
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i * Supersoript numersls rerer io Rsfcrsnees ot end of rsport,
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and there results, for ¢ , the equation

s 2.
. ; -0 Z<+DW, O<y<a. The plane y * O is to be a rigid bottom and y = a
' 1: a free surface. We 2ssume the motiun to be generated initially by a short-
' E orested wave system, of small amplitude, progressicg in a positive x-direction.
A f Such a system may be represented by its wslcclity potential,
? % PP= A cosh yoye' TV 0Kz = Re {cj)”’e"‘”} o kZ (2.1)
E where A is a constent and Y,, wo ave determined by
3 K= zz =] yotonh Yo O, wo2 =)’0,""k2 o (2.2)
It should be noted that Equation (2.2) puts an upper limit on k in order that
; the waves progress in the x-direction, namely k < K, and we shall
J ? henceforth assume W13 YO Dv Luv VacSe .
" 3 Now let a cylindrical oba*;:aolo of bounded oross sectior be fixed 1n. the
N . fluid. Jhe rasulting motion once steady state is roaohéd, will again be time
periodic with frsgusnasy < . Uoraovar, wa raduce the prob{10m to one in
i - two-dimensions by assuming thea Z dependence to remain in the form ::: kZ.
: g Under theze assumptions we wriio for the veloaity potential of the ensuing
; % motioxn,
i E . P(x,y, 2, t)=Re (p(x,y1e'7") O «kz _ (2.3)
| ¥
I i
!

b, *¢, K ¢=0 in fluid (854)

.k

If we denote by C, the trace of the obstacle on the x-y plane, and by
Cr that portion of y = a exterior to Co, we find that ¢  1s also subject

to the boundary oonditions,

¢>y"<¢ = 0 on o : (2.5)
c,ﬁy =0 on y =0 (2.8)
* '\;Jn —O on Co (:2°7)
a T —— -
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where n denotes *he normal to C,.

In order Yo fix the solution uniquely it is necessary to specify oon-
ditions &t iafiaity. We would axpmat the motion to consist of an incicdent plus
a roflacted and transmitted wave, i.e,, & oondition of the form

¢ - ¢ — Te™* x— +@), ¢ - ¢(‘n_- R ™* a5 x—-00. (2.8)

It turns out to be sufficient to demand only the weaker oondition

Hm a s a i o .
L-*(D{j; Y, (L,y)=1C V¢ (L,y)l‘dy-f-,gi\#i {—=Ly) =1 i-uyil? dy}=0 (2.9}

for some C > O , where Y = 9(3" ,14‘,"’. represents the soattered wave. It can

be shown that there is & unique ¢ satisfying (2.4), (2.5), (2.8), (2.7) and (2.9)

and that this solution does pot indeed satisfy (2.8).

The Gresn's funotion, G (x, y, x', y’), whioh depends on a parameter
point { 2/, y’ ) is tc be.so sonctructed that it expresses values or soluticns
at (x!, y') in terms of data on the obstacle surface Coe 1t is %o satisly
(2.5) on the entire y = a plane, as well as (2.6), sc as to suppress reference

to values of the solution on y = U and Op, 1In addition it must hawe a sinemlarity

of a certain type for (x, y) = (x/ y’) in order ihat the operation

e foazc,x +Gyy ~k2G) ¢ (x,y) dy dx
reproduce solutions of (2.4). Finaliy & must oarry the behavior of the aolution
for large (x| and hence must satisly {2.9).

The fundamental singularity of Equaticn (2.4) is found by separation of

veriables and is given by Ko ( K x2 + y? ) where Ko is essentially

the Hankel funotion of order O and first {ype with pwe imaginary argument. For

our purpose, ihis importart rroperties of Ko (2) are
Ko (Z) =0(e ") for large z , {2.10)
Ko (Z) = A(Z) log & + B (Z) (2.11)

A{Z), B{Z) are regular for real Z and A (0) =1,

N T o AR
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aig *® It osn be shown that the (rsen's funotion as defined is unigque and we
i prooeed tc give suoh a function., Consider,
\"'.
: f _ b f® coshyy {K sinh y (a-y)—y cosh yla-y) } _
| : Glx,y,x,y) = Jo > {K c%h ya~-y sivh 7o} cos w Ix—=x'} dw
; - for yzy
|
' ! ©®  cosh K sinh y(a-y)—y cosh y(a-y) ‘
i =-17f ryd Aol el y}coswlx—x'ldw !
: o {K cosh ya=y sinh yo}
c
< I
§ for ysy (2.12)
i where Y 2 —w? o+ kP and C is a contour oconsisting of the positive x-exis

l except for a #mall asmi~cirole around wg = V’yog - k2 (which is real if k <K).

i This funotion was given by Heins(z) in its partial fraction expansion form.

Meking use of the identities, s
! 3
- cosh y £ {K sinn y(o-L)=y cosh y(a- {i} -(K+y)cosh y€ cosh y { e’
y {K cosh ya-ysinh y a} = y{Kcosh ya—y sinh ya}
? PR IS SES ST
TTTEy TY TR
o o /W b _ 4 7
'/; ’\/W? +k2 COS wx dw = KC ( k ~/ X 4 bz ) . (2.13)

expression (2.12) may be transformed into,

W

’ 0" i Y] 5 T=X
(x,y, X, y¥) = 57 Ko (k « &x=x)* (y+y% )+ 2'-—,,K°(k Vv =F ly+y?)

_f" (K + ) cosh vv cosh yy! 9-2 cos w lx-x' | dw

o y {K cosh ya —y sinh ya} *~°° d (2.14)
W6 procesd to verify that. G has the Adesired properties. From (2.14)

Gy =0 on y=0C and from (2.13) Gy — KG=0 on y =a .

Moreover, G satisfies (2.4) except at (x‘, y’) where 1t nas a einguiarivy of the

prescribed type. In order to study the behavior of large x| it is con-

venient to make some further transformations on (2.14). We note that,

Hhioed i R— e e ————
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) ;

I
n v
- «k - -7a
'; Reg {_ __'_ (K+ yv)cosh yy cosh yy' @ l=__l (K*y)le ™ cosh Yy cosh X%y’ §
i wiwp L 7 Y (K cosh ya—y sinh ya} J 7 we sinh %0 | + 209 ’
£ sinh 2 %0
E thus ws obtain, by shifting the contour, C,
§
§ I - —— ——— - . e b it 4
/¥ G x,y, Xy y) = 37 o (k/ Td R+ 7=y ) + 2= Kok o/ Tx=x" B+ (y+y")?)
¢ : -%a
i(K+y)e cosh Y, ¥ €osh ¥, y iwnlx-xl
" “wp sinh 0 |+ 2@ g
gins 2 IYGQ .
! 4
| i 1 ® (K4 y)cosh yy cosh yy Sug | % = X’
| i FieE f y (K cosh y 6= y sirhi ya) a5
c’ .
£
. (2.15)
i where ¢! is a contour lying in the first or fourth quadrant according =s
_ ; x = x' s »0 or <O . It follows, using {(2.10) that,
i
-%a
! (K+pl@ °" cosh cosh 4 -x!
| E G ! ?gh Y%y > o)'cy o'Wa!x-x'l g4 Ixl=® . .
l E Wo St Yy a | 4 e T %0 ( ‘16)
' k . | y
i ¢ Now the squatizn (2.2) hes, in addition to the rsal roots t Yo "
¥ .
-’1 f an infinity of imaginary roots ripn, =1, 24 .. . Consequentiy, although
|
| : we make no usc of the fact, the above transformatiocn could be used to obtain
g *
| [ an expansion of the inte:ral term in & serles of the functions.
Ly
o
' ¥ In the case of infinite depth, the twransformation mway be carriad somewhat
L
: ? further in order to yield 2a expr2ssion for G involving only real integrals. For
] E convenierce, we change th? ovordinnis system =c that y is measwursd vertiocally
- ! downverd froam the free surfecs. Theu {Z.15)becomes,
. . ' Pp lx —x/I : ! - Ix=~x'l
cos p,ly-y) e’r , Cos po iy+y)e " 3
_ "mﬂ‘.'..... il e o= Mo TR g
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Glx,y, x', y') = Kq (k\/(x-x’)"’+(y-y')2 ) - 2LK oKly eyl glweIx-x/l

Wo
i @ ( +K) =G v -x!
__7Ref ?_()’K-_y) PR RS PN LALEL L B , (2.17

c’

where rnow ' consists of the positive imeginary azis except for a small
semi-cirocle in the right half plane abcut the singularity at Yy =0, i.e.,
w =ik , Computing the real part one is led to,

| . - | | g
Glx,y, x, ¥) = 577 Ko (K o= x R+l ‘,”)2)+ 57 Ko(k.v/—(x—x’)2+(y+y’)~)

m
2iC _-kly +y/) _iw (x=-x9) .
+ s e e
2K rorysin yly+y') + K cos y(y+y') - Tlx=x}]
7 L > (7 E T} e Jdr (2.18)
=ith Y = —V/T"‘*ki and principal values cf the integrals are meant, and where

use has been made of (2.13).

3. Waya Generstion by Moving Partitions

As a first application we consider the generation of water waves in a
basin by means cof a vertical partition. It is assumed that the partition is
divided into seotions along its Jengihk, sach of which may be moved with an ia-
dependent amplitude and phase. If the seotions are suffioiertly small, the
distribution of horizontal welooity of the partition may be given effectively an
srbitrary shape. We suppose the entire partition to be suffiolently long
that we may negleot end effects. The problem is to detsrmine the motlion, and
the thrust nesdsd 4o obtain that motion, which shonld be given the partitior in
order to produce =« rrescribed wave motion.

The solution is oonteined in the following result which is essentially

a gensralization of the work of Eavelook(s) and Kenne.rd“).

TN R e —————— B
e e o




: 3 -0
i : ,
A § {

Theorem; Tha funection ¢ (x, y) defined by,
::.'- fm -2 A ’ )
> $(x, y) = —2 ) (y') Gix,o0,x',y) dy, (3.1)
? ia a solution of the problem,
| _ 8) P F Py, ~kip=0 in 0<x<0, O0<y<a
. 4 v) ¢y"=C on y=0 , x>0
o) ¢y, -K¢p =0 on y=o , x>0
d) 4>—'Acosh Y Y @ Vot as x — O
lim
o) (=0 %—;t = f(y) for O<y<n and f(y)continuous in O<y<a.
Proofs Te first throe properties follow immediately from those of G
! () follows from (2.16) with,
21 (K+y) e’ J ' b
A= wo Sinh %0 P Z %o _/(: f (y) cosh %y dy . (3.2)
! sinh 2%¢a
. Prom (2.14) it follows thet,
lim a‘é | Im Fa .
x =0 0 x = Tn x =0 J‘O f(y’) d x KO(K-\/(X"X )2+(y—yl)2 )dyl *
| { Co making use of (2.11) and the continuity of f we can reduce this further
i
L. to,
l ; lim . 29 — L tm £ (y) ./'"’ x dx
4 x =+ 0 Jzx T ox - Ly x§+(y—y’)§ *
! i Then we make use of the faot that,
|
; t >
: e < dx m for x>0
i
f ~o X2+ lymy)? -7 for x<0
i lim 09 5
¥ to obtain =0 As = ¢{y] .+ This completes the proof and yields
i & A
| in addition the useful corollary
! I a
! : Corollary: Ie $(x,y)= -2 j; Fy") Ko (k/ Tx=x2+{y=yNZ )dy'with f(y)
[ continuous,
fim Jd ¢ lim d _'_
M _.Ofr Ox — f(y) 4 x _.O- ax - f(y) . (3.3)

e a1
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& Formla (2.3) is e special case of a more general theorem which wa

%M.-"mﬂ

will not develop hera. integrals of the above type represent “source layers"
& analogous to those ocourring in ordinary potential theory,and foymula (3.3) 1s
merely a statement of the jump condition et suoh a layer.

We are now in a positioa to consider the wave generation problem.
To simplify the analysis we assums the generator is of the plungsr type so
that fly) =B , & constant. We denote »y Wil s 2l A the horizontal
velocity of the partition and by T the surface elevation at infinity.

Noting that,

|
n =73 ot lyo (3.4)

our theorem enables us to consider several oases,

Case (1 B real,
c ne 298/g
. v, =Bcos ot coskz, Mg~ = ———3 5. C05 (wox=-o0o1t) cos kz
wo (I Rz %0/

20 B/g

v, = Bces ot sin ke, N = A cos (wp x =0 t) sin kz
o wo (1 + ——=5—)
° sinh 230

]
P PRI D T O PN P

Q
®
-]
o
o
4

B imaginary,
: 2
v, =B sin oot cos kz, Nnac = "B’g 5 sin (wg x ~o1) cos kz
o wo (1 + ——52)
sinh 2 %0

{
] i 20 8B . :

vz =B sin &t sin kI, Pt = /g = sin {wo x = Ct) sin kz
! 2 I+ - )

wo { sinh 2 50

;
~ Case (3) Superposition of v,° and  v,* .

v =v®+v,® =Bcos (kz—-ct) (5.5)

2c B
7, ='1)m'-° +'r)°"3 = /9 cos (wox—kz=01t) (3.6)

2 %o
wo (14 slnnﬁﬁ'a')

e e gy = Lol % v - e R ke B O A TN\ TED 3. s ORI T .
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sinh 2 % o
for the amplituds, l'r;m | , of the plane wave and in case (3). Now the
. items we are at liberty to specify are o and Kk , hence we take as parameters
2
Ka = _Zcr_ﬂ_g_ , 8nd ko . For calculations the importent parameters are Ka
aad --5—; = B » the latter of whioh, as we have seen, measures the direotion

PR .

The. firat two cases represent situations in which the sections of the

t
1

partition ;novo with the :2m¢ phass but varying amplitudes. The resuliing
wave motion, sufficlently far from the partition, will form = shori~crested
wave cystem propageling outward,

In the third csse, on the cthar Lhand, the seotions move with the same

amplitude but differing phaseas. The resulting system is now e plane wavse

moving outward at an angle, fan”' Lw , to the z-axis, with frequenocy o

and wave lengta LT .
Ya

ir Mo denotes tie amplitude of the motion of the partition, we

obtain from (3.5) and (3.6),

of propagution of the plars wave,

. K
For water of infinite depth, ¥, = K , and thus -~ is the ratio

of the depth to dsep water wave length of long-orested waves of frequency O o

Ko
27

This being the oase, we can enter Wiegel's(s) tables with taking the
place of d/Lo.
A fow results are indicated in Figure 1. In Figure 2 the ocrresponding

case of a flapper type generator, whioh 1s hinged at the bottom, iz shown. It is

noted thet the wave-maker beoomes lnoreasingly less offioient as ons attempts

to increase the propagation angle. 1In fact, as 0 approaches 45°

the ratio in (3.7) approaches O. If one attempts to produce greater angies one
meraly sucoceeds 1ln generating so-oalled "edge waves” which vanish exponentially

away from the generator. A similar situation involving a subtmerged oircular
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ovlinder is considered in & recent paper by Ursellie).
7o obtain ths pressure at the partition ws can uss

0P

p(81y)z)t)=pg—at I)(=O' .

We obtein then,
cos

r ra o :
p=-paoRe{iB) G (0,y,0y)aye' " } T Kz,

an integral which could be obtained by quadrature.

4 Reflection from a Strip

As a second epplicetion we consider the reflection of short orested
waves from & strip of Tfinite width rigidly fixed in the free surface. HNatn-

ematically the probiem is the following

¢”+q5yy—k29’>_—_-o in O<y<o (4.1)
¢, =0 om y=0 (4.2)
.y—Kc,b = Q0 on y=a Ixl > b (23
¢, =0 °8  y—g Ixl < b (4.2)
¢ - A cosh x e'"* saticfies a condition of form (2-8), (4.5)

We remark at this stage that the analyeis of Fritz John may bo carrisd
over almost intact to yield a fairly general sxistence theorerm for the dirffrac-
ticn problem formulated in section two. This theorem, however, damands that
tac obstavle surfece bs perpsendicular to the free surface at their inter-
seotion, a condition which is not satisfied in the present problem. Our
conatrruction will in itself constituts such an existenoe theorem for the prescrt
cas8a.

Consider the funotion,

pth i ;

. ! ! : i IWo X o

dix vy = YGlx,a, x' v ads + Aaosh oy € (4.8)
s »d 2

whera f{x}) is a functior we will determine later. From (2.16) we find,

T ST A VTN T ATIITA 0 N b A U G AR 5, ST 81 wal m—gevnam T R i & e
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g ~-%a
woxt _ <t € " cnch %Y waxt P
w; sinh ga . 7; & -;_b T{x) & dax

S (. 'GU

N
‘

;o !
W ix’ vy} ~ A cosh %ye

|W A

= A cosh )6',"9 + T, cosh %y'c‘}'wo X as x—+0 , (4.7)

S [ wi
K+ ccsh 5! s +b -
Yix' y') ~ Acosh yy'e™ - Alas 1 L. L B TS LN

wo SINR %O 4 2 5%¢

o

slnh 2 3¢
= A cosh ‘,\6)/’9’%"[ +R cosh % ‘,”9-]w°xl as x— 00 . (4.8)
Thus ¥ix’ y") satisfies (4.6) with R representing & reflected wave and
T) cosh y y' i combining with the incident wave to give a trans-

| mittad wave. That Y alsc satisfies (4.1), {(4.2), and (4.3) may be veritied by
direct differentiation. In crder to make ¥ (x',y') & solution c;f

our problem it remains to show that f(x) mey be chosen in such a way
that (4.4) 1= sa:isfied,

Prom the defining equation (2.12) for G we find,

oG i | 2 sinh 7 y/

oy (x,0,x,y") = - = j: ok = };—ﬁﬁ——)—;;;—ees—-ud—*--—x—kdw s(449)
i -‘::. 3
‘;4 Ou: differsntiation of the identity (2.13) with respect to b we find that

(4.9) may be written as,

gyc’: (x0,x y) = +7',— —507 {Ko (R (x=R)2 Fla—~y)e )}

LoD sinh yy TPV R
_?./u ILK Coshyo—ysinhyofe ]COS w | x— xldw +(4.10)

B'ad

. . We now state without proof the following result, part of which was

sssentially proved in section three.

Y

+hd P \
mma. 1 3 The funotion P{x')y') =f f(x) Koﬁkﬂx—x’)2+(o—y’)2 Jdx , for f(x)
-b

acntinuous in -b < x<+b is a solution of Cbx, +<D D =0 1= y' <g

)

s e - - A iy

S i e - . - e ok o e
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is continuous on y'= a

£rom y' < o0

lim
¥{a

determination

Setting

Let us

where C', 6"
the lower half plane abou%t the singulsrities.

whatever diffioculties may arise for X == X e

tim 2 P (xy)

= f (xl)+

o Yix,y)
ov’

investigate the nature of the keraei,

@ | __/d
s N i oos wlx—x'|dw
Kinym - L [ @ wle=rion

-b < x <« +h

)

anG satiszfie s,.

= witlx ) for -b<x <b =

G
From this lemmz ard Equation (4.10) we h&ve,

+b

f(x) K(x,x')dx +iwg A cosh % € g've
-b

Yy sinh rya

| < I
) vf’-‘ [Kcos")’o')’sinhyo +|J cos w lx=x'| dw

© cosh ya cos wlx=x'| dw

K coshyo—y snhyo  *

f{x) .

K (x, x')

18

f® y cos w (x=x') [tanh ya-1]

when defined as its limit value,

X

- =0 gives, therefore, en integral equation for the

. Vo write,

T g T K
K o

oconsist of the positive rsal axis except for

!

caloculation, we find, 2

e—‘\,‘w" . ks Voo xil

dw + -+ — -
(o W+ K

where the dots indicate terms which remesin boundsd as X = %

according to Buuation (2.13),

X = X

s T U A C AT L W L I L T PR b P v oaoie &

, and has a logarithmic singularity there,

(1-% tonnyo) (1= )

gami~-circles in

The first term then contains

Proceeding as in an earliier

K (x, x/)  behaves 1ike K,(k | x=x'l) near

—————
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We are thus confroated with the integral equation,

fw pto
: T, X o g B Wy
—iwg A cosh yae =f(X)"‘.}“b fix) Kix, x') dx (4.11)

!

in which the kernsl bscomes logarithmiocally infinite es £ = x ., The

Precholm theory may bas applied and will yield the existence of a continuous

solution of (4.11 cd there exist no non-trivial solutions of ths as-
sociated homogeneous equation. To see that mno such sclution exists, we suppose
there were one and study its propurties. Let fo (x/) be the solution aad

form the functicn,

+b
:.,'6( oY) J x)G(xcx,y)d 3
From the expression (2.14) for G, ard Lemme (1) we cosclude that Y (x',y')
is continuous in 0<y <a , -b< x' < b . Moreover fo(x') satisfies
= (4.11) with the left hand side set squal %o O, hence,
¥ lim 0 Vo (xy)
P T = 0 .
y'1a Ty
¢
f G( [Tt ) ’16) L
. Now Q—"‘s-;]‘TL—"——KG(X,O;X/,O):O in -b < x<+p except at x = x'
| b
i where the difference becomes infinite in such a way that

+b . ' q
’ f f(x)[égw‘KG(x?c,x/.,c)! dx = f (') .

b vy

; Therefore, i
i H
;r E :’V;O{_ﬂ___d—)-—}(lp (x,,)f::fo(x) o (4.12)
Le g {It is important to note that this relation hovlds elso for the functions
; g 1/ and ¢ {x') which are to solwa ouwx zroblsw, a iact which makes .

g possibls a direot detarmination of iz g} cnce {{x" 45 Xnown, without

H

; recourzs to another iutegration.)

£
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Pinally ws make use o another lemas which we als~ state without proofs

S

Lemma 24 Let ¢ {x,y) tsa solution of ¢ | +¢,-y), —k2¢—0 in Q<y<ao

satisfying the following oconditions;

~~~~~~ ng
a) by =0 oo y=0
‘ b) ¢y-K$p=0 on y=a, Ixl>b
t 0) ¢y =0 on y=a Ixl<b
'-’ a " {f" ¢, (L) - 1CIL IRy + [“1hL,y1~ 10 CLYE dy=0
e) 2"_\_.0 f ¢pp, dl =0 where I'e consiste of the
| hemispheres, (x b +y° = € | y<a .
' Then ¢ix, y) =0 in O<y<a.
£ The lemma is intuvitively obvicus, sincs it merely atates that if thers
! is no inoident wave end the strip is held rigid, no motion can bs produced in
| . the £luid. A proof may be darived from en anslogous l:mma given by Fritz John.
,‘ The function ¥, (x',y') enters the hypothesis of the lemma, in faot will
: N be continuous at (£ b,0) ; thus it is identically O in O<y'<a , and .
Ii r i by the continuity siso for yl = a. We oonclude fo («V=0 in -b<«x'<b.
fl ; It is interesting to mnote that we may pass to the limit ez k — ( ,
il while still retaining che same type of behavior for large x| . The fact

does not seewz obvious since the behavicr of solutions of laplace's equation ut
large distances is much differeut them thet of solutions of ¢, +¢yv —k2¢= 0o

for ¥ > 0. Por k=0 we obtain for the potential ¢(x', Vi

p© cach wr !

! I _ i D v 7 H v ]J . =
é (x,y) = ] f (x) ILJIo TR cosh ya— 3 s yoJ 08 Wix—x1 dw [dx. (4.33)
; [

where f{x) satisfies,

3o

Ty, x! 5o L2
! ~iws A cosh wo 0@ ™™ =1(x') - %‘f r(x)[_/o- K coth jf'l;‘,'fmh s cos w bx- x|dw1dx {4.14)
i Ly S| s
Wo being & solution of K cosh wo a = wo sith wo C

b
m.’mﬁ"?‘mqrw-w RSN I PR TIN5 ) RS e oyt
.

T

_\,4 [T a8, <‘. =2
L1}




P o e

g o . e RN T et e i e T

NE SCPAI 5 g o PN T e 4 St

[ i
P———
. 2
) f
i
f
[
H
¢
3
i
't
¥
r
i
&
1
| 4
t
.
. ¥
¥
[
k
E
i
-

e

If the depth is infinite ihv keroel may Us s5valaa

yislds,

. +b —
—iwg AN =1(x) - %f f(x) [vie exi L cos K Ix=x'} Citlwla=x'1)
-

-,

+sn Kl (St (Kix=')-F ) Jax (435
where Ci, Si are the integral-cosine &nd :.ntegral-sine functions respectively.
The appearance of the term C! (K !x-x'}) confirms our earlisr remark that the
Kernel beocome= logarithmioally infinite as  x j°x' .

The existence of & sclution heving been established, one may turn to

the question of obiaining numeriocel resulis. An equation of the type (4.11)

can b2 solved in a strailghtforward way by replacing f{x) by a polynomial

approximation und thus obiaining e sys. m of n linsar equations for the
determination of the walue of . f (x) at n points. The numerical work iu=
volves numeriocal computation of integrals involving i((x,xﬂ and powers of x o

The singularity gives nc diffisulty as it may be subtracted off and the in-
tegrals involving it carried out explicitly. Some work of this type is under-
;ay and it ie¢ hoped may be presented in the futureo

A more elegant, although possibly less useful method is the applliocation
of the wvariational methods of Sohwingor(7),.wbich were develioped <o treat
aperture diffraction provlems. If Equation (4.11) is multiplied by f(x')

and integrated over the strip and use is made of (4.8) we find,

fﬁ f(x')? dx' + f_’: ff: F0) F(x) Kix,x") dx d&’

' ; 2 atab oAz oo 2 v A - )
2 et (14 =) o =S 2 e
= . % ohat ~ o~ +b iwg x* =

\l\ﬂ')’c,e \ SN0 ¢ 7o C ( f-b f(x’')@ ° dx')

where r ie gssentinlly the refleotion coefficient. Now the quantity on the
right hand side of (4.16) is stationary with respeot to first ordsr wariations

of f(x) about its curreot value as determined from the integral equation {4.1l).
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It might be hopned, therafore, that the reflection coefficient would be relatively

inssnsitive to errors in f(x) ’
More explicit use of the etationary sha=snter of «é— mey be mode as
foilows. Suppose we expasd fi{x) iz (-b, B) iz a Pourisr ssriss”,
“o R
f(x) = Z (i.\ @ o .
-
If we substitute this expression in {4.11) we obtein,
+ 4+ @ t_g\) 2
(Zb Qn O, +2; am ag Crm)" = ( 2 @, B, )
= - ~w
where
+o
{' -inx _—imx! - o inx _lwgx
Cma = j/ © e K {x,x)dxadx , B, = e & dx .
_b -b
Differentiating with respect to fo I and noting that r is stationary,
+ o :g‘)
Fi2 a_m+;); @y Cpn) r = 2B 2 Bn) m=0, £i,+2,....
Defining oonstants, ‘D » by
2 2 2Cq -
ap="5 Dp( 2 an Bn)= =% Dp P=C, 21,2, ..,  (417)
we cobtain finally
+©
r=2 ) Dy By (4.18)
9"-0
Bt ) Gusd = By ) m=0, £1, £2,... . {4.19}

We have thue transformed the problem intc solving an infinite system
of lineer eaquations, (4.19). Onoe the D, ‘s are found ,the reflestion co-

eifiolent can be computed frem (4.18). In theory one could also obtain f(x).

n| -
*  The choice of functions -{etlnv } for the expaunsion of f{(x) is not es-
ssatial to ths method., 1Y suggests its¢lf, however, sinse Tor gertain values
(e 1 ' "
of Wo , the set Y Bn ¢ reduces to & single term,
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% Substituting the series tor  f(x) with ap replaced by = D, in
3
4 the intaegral equation {ixes ks ocnmstext O end {hus determines an
I S
| For the vass of difPractinn of sound weves through a circular aparture, the
scheme has proved quite suocessful, and it was found that only a few terme of
the infinite series suffice to glve guits fsourate approximations. |
!
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